Linear Algebra
http://cs229.stanford.edu/section/cs229-linalg.pdf
http://www.deeplearningbook.org/contents/linear_algebra.html
Matrix + – * / :
Matrix-vector product
Matrix Invers:
Inverse function f-1 undoes the effect of f so f-1(f(x)) = x.
Matrix Transpose:
read.csv(“med.csv”)
read.csv(“med.csv”, header = T)
read.csv(“med.csv”, check.names = F) : don’t mess with titles
read.csv(“med.csv”, sep = ‘\t’)
read.csv(“med.csv”, sep = ‘;’)
read.csv(“med.csv”, stringsAsFactors=F)
read.csv(“med.csv”, header = TRUE, sep = “,”, quote = “\””)
read.csv(“med.csv”, sep = ‘;’, na.strings = c(‘?’, ‘!’)) replace ! ? with NA
read_excel(“med.xlsx or xls”)
linear systems
change of basis
Vector Space
Va fan är det här
![](http://talimi.se/wp-content/uploads/2017/11/TediousIllegalHanumanmonkey-small.gif)
Linear transformations
avbildning
determinants
Spaces
- Subspace = Delvektorrum:
- Hela Rn
- Alla plan som går igenom origo
- Alla linjer som går igenom origo
- Alla noll vektorer
- Om v tillhör Rn så tillhör (en konstant) x*v också Rn
- Om a och b tillhör R så tillhör a*b också Rn
Bases
RANK1 = Line
RANK2 = Plane
RANK3 = 3D
RANK är number of dimensions in the output.
RANK = # PIVOTS = antal linj obr = dim(c(A))
C(A) = span(v1, v2, v3 … alla oberoende vektorer)
dim ImA + dim Ker A = dim V
Ker A är det kolomnvektorer som skapas av t,s etc
Im A är de kolomnvektorer som innehåller pivot elementen
Radrum : ATv : v tillhör V
![linear algebra ker Lm L: V W](http://talimi.se/wp-content/uploads/2017/11/KerIm_2015Joz_L2-e1511625094885.png)
Eigenvectors and eigenvalues
read.csv(“med.csv”)
read.csv(“med.csv”, header = T)
read.csv(“med.csv”, check.names = F) : don’t mess with titles
read.csv(“med.csv”, sep = ‘\t’)
read.csv(“med.csv”, sep = ‘;’)
read.csv(“med.csv”, stringsAsFactors=F)
read.csv(“med.csv”, header = TRUE, sep = “,”, quote = “\””)
read.csv(“med.csv”, sep = ‘;’, na.strings = c(‘?’, ‘!’)) replace ! ? with NA
read_excel(“med.xlsx or xls”)
![Eigenvectors visualized Extended in gif eigenvectors](http://talimi.se/wp-content/uploads/2017/11/Eigenvectors-Extended.gif)